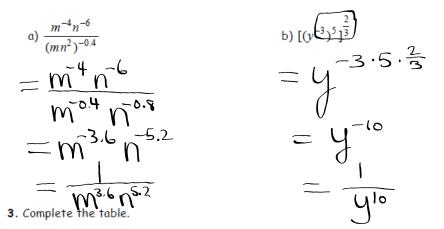
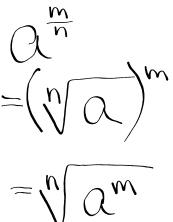
These review lessons <u>should not</u> be considered a comprehensive review of all topics. You should be reviewing ALL of your notes, quizzes, tests, and textbook to prepare for the exam/summative.

Unit IV Review - Exponential Functions June 13/14


- 1. An antique dresser was worth \$560 in 1992. Each year, its value increased by 1.5%.
 - a) Write an equation that models the value of the dresser as a function of the year after 1992. $\Lambda = P(1+i)^{n}$

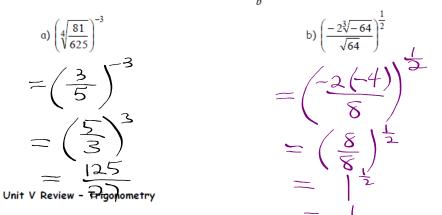
$$A = P(1+i)^{n}$$

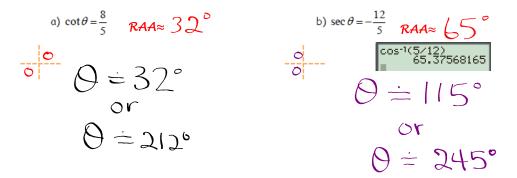
= 560(1+0.015)

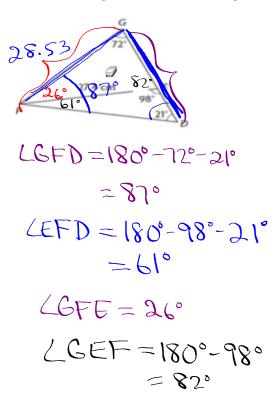

b) Determine the value of the dresser in 2000.

$$A = 560(1.015)^8$$

= 630.84


2. Simplify. Write your answer with positive exponents.

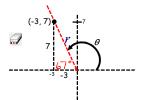

Exponential Form	Radical Form	Evaluation	
$81^{\frac{3}{4}}$	$\left(\sqrt[4]{81}\right)^{3}$	27	
1212	(√121) ⁻³	$\frac{11^{-3}}{=\frac{1}{11^{3}}=\frac{1}{1331}}$	
625 ⁽²⁵⁾ 4	\$ 625	5	


4. Evaluate. Express your answers in the form $\frac{a}{b}$.

1. Given the following, determine all values of θ , to the nearest degree, if $0^{\circ} \le \theta \le 360^{\circ}$.

2. For the triangle below, calculate the length of GF and DG to the nearest 10th of a cm. Diagram not to scale.

$$\frac{GF}{\sin 82^{\circ}} = \frac{27.4}{\sin 72^{\circ}}$$


$$GF \doteq 28.53$$

$$\frac{DG}{\sin 81^{\circ}} = \frac{28.53}{\sin 21^{\circ}}$$

$$DG \doteq 79.5$$

3. Given the coordinates: (-3, 7) on the terminal arm of angle θ .

i) State the value θ to the nearest degree if $0^{\circ} \le \theta \le 360^{\circ}$ and sketch the angle.

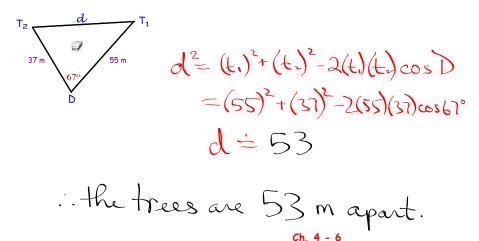
ii) Determine the value of r to the nearest tenth of a unit.

$$\Gamma^{2} = (1)^{2} + (-3)^{2}$$

$$\Gamma^{2} = 58, \Gamma > 0$$

$$\Gamma = \sqrt{58}$$

$$\Gamma \doteq 7.6$$
iii) State the primary trig ratios of θ .
iv) State the reciprocal trig ratios of θ .
$$Sin \theta = \frac{7}{\sqrt{58}}$$
iv) State the reciprocal trig ratios of θ .
$$Sin \theta = \frac{7}{\sqrt{58}}$$


$$Cos \theta = -\frac{3}{\sqrt{58}}$$

$$Sec \theta = -\frac{3}{\sqrt{58}}$$

$$Sec \theta = -\frac{3}{\sqrt{58}}$$
iv) Find the value of θ correct to the nearest degree.
$$RAA \doteq 67^{0}$$

$$\theta = 113^{\circ}$$

4. From one side of a river, David sees two trees on the opposite side. The distance from David to one tree is 55 m and from David to the other tree is 37 m. The angle between the two trees from David's perspective is 67°. How far apart are the trees, to the nearest metre?

Pg. 408 # 1 - 18, 20 - 28