## Unit VII Review - Discrete Functions - Sequences \& Series and Financial Applications June 9/14

1. State whether each of the following sequences is arithmetic, geometric or neither. If arithmetic or geometric, state the common ratio or difference.
a) $5,18,57,174,525 \ldots$
b) $\frac{67}{100}, \frac{69}{100}, \frac{71}{100}, \frac{73}{100}, \frac{735}{1400}$
c) $\frac{3}{5}, 6,60,600 \ldots$
neither arithmetic $d=\frac{1}{50} \quad$ geometric $r=10$
2. Determine the next three terms in each of the following sequences.
a) $\underbrace{17}_{+3} \underbrace{20}_{-5}, \underbrace{15}_{-3}, \underbrace{18,16}_{-3}, 11, \ldots$ the next three terms are $14,9,12$
b) $\frac{1}{8}, \frac{1}{27}, \frac{1}{64}, \frac{1}{125}, \frac{1}{216}, \ldots \quad \frac{1}{2^{3}}, \frac{1}{3^{3}}, \frac{1}{4^{3}}, \frac{1}{5^{3}}, \frac{1}{6^{3}}, \ldots$

$$
\therefore \text { the next three terms are } \frac{1}{343}, \frac{1}{512}, \frac{1}{729}
$$

3. Find each of the following terms.
a) the $12^{\text {th }}$ term of the arithmetic sequence $13,6,-1,-8,-15, \ldots \quad d=-7$

$$
\boldsymbol{t}=\boldsymbol{a}+(\boldsymbol{n}-1) d \Rightarrow
$$

$$
\begin{gathered}
t_{n}=a+(n-1) d \Rightarrow \\
t_{12}=13+11(-7) \\
=-64
\end{gathered}
$$

4. For each sequence, determine the total number of terms.
$d=16$
a) $-18,-2,14,30, \ldots, 126$

$$
\begin{aligned}
& t_{n}=a+(n-1) d \Rightarrow \\
& 126=-18+(n-1)(16) \\
& 144=(n-1)(16) \\
& 9=n-1 \\
& 10=n
\end{aligned}
$$

5. For each sequence, determine the total number of terms.
$\begin{gathered}\text { a) }-8,4,-2,1, \ldots,-\frac{1}{128} \\ t_{n}=a \cdot r^{n-1} \Rightarrow \\ -\frac{1}{128}=-8\left(-\frac{1}{2}\right)^{n-1}\end{gathered} \quad \rightarrow\left(-\frac{1}{2}\right)^{7}\left(-\frac{1}{2}\right)^{3}=\left(-\frac{1}{2}\right)^{n-1}$

$$
\left(-\frac{1}{128}\right)\left(-\frac{1}{8}\right)=\left(-\frac{1}{2}\right)^{n-1} \quad . t h e r e 1
$$

6. For each series, calculate:
a) $S_{12}=-5-11-17-\ldots \quad a=-5$

$$
\begin{aligned}
& S n=\frac{n}{2}[2 a+(n-1) d] \Rightarrow d=-6 \\
& S_{12}=\frac{12}{2}[2(-5)+(12-1)(-6)] \\
&=6[-10-66] \\
&=6(-76) \\
&=-456
\end{aligned}
$$

7. Calculate the sum of the following series.

$$
\begin{aligned}
& \text { Calculate the sum of the following series. } \quad==\frac{1}{3} \\
& \frac{1}{6}+\frac{1}{18}+\frac{1}{54}+\ldots+\frac{1}{1458}
\end{aligned}
$$

$$
\Leftarrow S_{n}=\frac{r \bullet t_{n}-a}{r-1}
$$

$$
\left[\begin{array}{c}
t_{n}=a \cdot r^{n-1} \Rightarrow \\
\frac{1}{1458}=\frac{1}{6}\left(\frac{1}{3}\right)^{n-1}
\end{array}\right](\times 6)
$$

$$
\frac{1}{243}=\left(\frac{1}{3}\right)^{n-1}
$$

$$
\left(\frac{1}{3}\right)^{s}=\left(\frac{1}{3}\right)^{n-1}
$$

$$
=\frac{182}{729}
$$

$$
n=6
$$

8. Omit
9. Alan invests $\$ 50$ a month at $3 \% /$ a compounded monthly. How much will he have in 10 years?

$$
\begin{aligned}
F V & =\frac{R\left[(1+i)^{n}-1\right]}{i} \Rightarrow \\
& =\frac{50\left[1.0025^{120}-1\right]}{0.0025} \\
& =6987.07
\end{aligned}
$$

$$
\begin{aligned}
a i & =\frac{0.03}{12}=0.0025 \\
n & =12 \times 10=120
\end{aligned}
$$

$\therefore$ he will have 6987.07 in 10 years.
10. Lena pays back a $\$ 10000$ loan with payments every 3 months over 3 years.

If she borrowed the money at $4 \% /$ a compounded quarterly, what is her regular payment?

$$
\begin{aligned}
& P V=\frac{R\left[1-(1+i)^{-n}\right]}{i} \Rightarrow \\
& 10000=\frac{R\left[1-1.01^{-12}\right]}{0.01} \\
& \frac{(10000 \times 0.01)}{\left(1-1.01^{-12}\right)}=R \\
& R=888.49 \\
& \therefore \text { her payments are } \$ 888.49 \text {. }
\end{aligned}
$$

