These review lessons should not be considered a comprehensive review of all topics. You should be reviewing ALL of your notes, quizzes, tests, and textbook to prepare for the exam/summative

Unit VI Review - Trigonometric Functions June 16/14 $\quad y=a \cos ^{\sin }[k(\boldsymbol{\theta}-\boldsymbol{p} \boldsymbol{s})]+.\boldsymbol{v} \boldsymbol{s}$.

1. Determine the equation of the trigonometric function whose graph has each of the following features.
cosine function
a) An amplitude of 3.5 , a period of 10°, an equation of the axis of $y=4.5$, and a horizontal translation of 66°.
.7.) Per. $=\frac{360^{\circ}}{k} \quad \therefore k=\frac{360^{\circ}}{\text { Per. }}=\frac{360^{\circ}}{10^{\circ}}=36 \quad y=3.5 \cos \left[36(\theta-66)^{\circ}\right]+4.5$

$$
a=3.5 \mathrm{~V}=5=4.5
$$

sine function
Sine function
b) An amplitude of 8 , a period of 1440°, an equation of the axis of $y=-9$, and a horizontal translation of -270°.

2. A hypnotist is swinging his pocket watch back and forth in front of a motion detector that has just been activated. The distance of the pocket watch from the detector in terms of time is modelled by the function $d(t)=8 \sin (60)^{\circ}+20$, where t is time in seconds and $d(t)$ is the distance in cm .
a) What is the closest distance the watch gets to the motion detector?

The closest it gets to the detector is 12 cm .
b) How long does it take for the pocket watch to complete one full cycle of swinging back and forth?
asper: $=\frac{360^{\circ}}{180^{\circ}} \quad \therefore$ it takes 2 seconds for one cycle
c) What is the distance of the pocket watch from the motion detector at $t=10.5 \mathrm{~s}$?

$$
\begin{aligned}
d(10.5) & \left.=8 \sin [180(10.5)+60)^{\circ}\right]+20 \\
& =24
\end{aligned}
$$

\therefore the watch is 24 cm from the
3. Prove. motion detector at 10.5 s .

$$
\begin{aligned}
& \begin{array}{ll}
\text { a) } \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cot ^{2} \theta}=\tan ^{2} \theta & \text { b) } \frac{1+\tan ^{2} \theta}{1+\cot ^{2} \theta}=\tan ^{2} \theta
\end{array} \\
& L S=\frac{1}{\cot ^{2} \theta} \\
& =\tan ^{2} \theta \\
& L S=\frac{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{1+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}} \\
& =R S \\
& \therefore Q E D \\
& =\frac{\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta}} \\
& =\frac{1}{\cos ^{2} \theta} \times \frac{\sin ^{2} \theta}{1} \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\tan ^{2} \theta \\
& =R S \\
& \therefore Q E D
\end{aligned}
$$

4. Sketch at least one complete cycle of the following.

5. The height of a weight on a spring above a table is given by $h=20 \sin \left[225^{\circ}(t-0.4)\right]+50$ where h is in cm and t is in seconds. Find the times when the weight is 60 cm above the table during the first 5 seconds. State your answers to two decimal places.

3 Let a represent $225(t-0.4)$
(3) Period: $\frac{360^{\circ}}{225^{\circ}}=1.6 \mathrm{~s}$
$h=20 \sin a+50$
$60=20 \sin a+50$ $\frac{1}{2}=\sin a$
$0 \quad 0 \quad R A A=30^{\circ}$
$\therefore a=30^{\circ}$ or 150°
$225(t-0.4)=30^{\circ}$ o 150°
$t=0.53$ or 1.07
Add multiples of 1.6 (the period) to above values to get other times when $h=60 \mathrm{~cm}$.
\therefore the weight is 60 cm high at $0.53 \mathrm{~s}, 1.07 \mathrm{~s}, 2.13 \mathrm{~s} .2 .67 \mathrm{~s}, 3.73 \mathrm{~s}$, and 4,275

Ch. 4-6
Pg. 408 \# 1-18, 20-28

